FOR 2863 Meteracom Metrology for THz Communications



# Sensitivity Analysis of a 280 – 312 GHz Superheterodyne Terahertz Link Targeting IEEE802.15.3d Applications

Dominik Wrana

Funded by

DEG

Deutsche

Forschungsgemeinschaft

1st International Workshop on Metrology for THz Communications, Braunschweig, 28 June 2022

- 1. Motivation
- 2. Transmit and Receive Chipsets for THz Wireless Communication
- 3. Sensitivity Analysis
- 4. Conclusion



## 1. Motivation

### **Metrology for THz communication systems**



#### chip-level non-idealities cause signal distortion!



 $\rightarrow$  device characterization + sensitivity analysis to define link capabilities and optimum operation points



28 June 2022 | Dominik Wrana | Sensitivity Analysis of a 280 – 312 GHz Superheterodyne Terahertz Link Targeting IEEE802.15.3d Applications | 3/<total>

## Tx / Rx Chipsets for Wireless THz Communication MMIC Architecture

1. METERACOM-specific Tx and Rx MMICs (adopting a specification-driven top-down design approach)



Novel BOEL 300 GHz Tx and Rx MMICs



2. Superheterodyne Tx and Rx MMICs (specifically developed within the ThoR project)



## **2. Superheterodyne Tx / Rx Chipset for Wireless THz Communication** Frequency Response



## 3. Sensitivity Analysis **Measurement Setup**

- Goals: ٠
  - Characterization of H-band Tx / Rx chain to find optimum operation points for wireless demonstration
  - Analysis of the influence of chip-level impairments on signal quality
- Tx Rx chain in back-to back configuration neglecting all air channel impairments •
- Custom E-band frequency extensions •  $f_{\rm ref 2} = 10 \,\rm MHz$ Coherent LO generation • Oscilloscope Freq. Mult X8  $f_{\rm max} = 10 \,\rm MHz$ Freq. Synthesizer OUT  $f_{\rm refl} = 100 \,\rm MHz$ LO **Q** 2 **O** 3 **Q** 4 **O** 1 Q Out . . . . E-Band RX  $f_{\rm LO,H} = 8.75$  to 9.5 GHz .....  $f_{\rm ref,l} = 100 \, \rm MHz$ Att Freq. Mult H-Band req. Mult X8 Rx X8 LO BPF LO BPF BPF (optional) AWG  $f_{\rm IEH} = 70$  to 90 GHz = 286 to 318 GHz  $1 \overline{1}$ 2 2 3 3 4 4 var. Att. IF BPF  $f_{\rm ref,2}$ = 10 MHz  $\mathbf{Q}$ 00 00 00 E-Band Tx -0 Freq. Synthesizer OUT . . Out Freq. Mult.  $f_{\rm IFF} = 0$  to 5 GHz **X8**  $f_{\rm LO,E} = 9$  to 10.5 GHz ..... 11 www.meteracom.de 28 June 2022 | Dominik Wrana | Sensitivity Analysis of a 280 – 312 GHz Superheterodyne Terahertz Link ER

Targeting IEEE802.15.3d Applications | 6/<total>

## **3. Sensitivity Analysis** CW Measurements – Tx Linearity / Rx Sensitivity



#### **Tx Linearity**

IP1dB = -4 ... -2 dBm
OP1dB = -6 ... -4 dBm

#### **Rx Sensitivity**



- CG = 2 ... 6 dB
- IP1dB = -24 ... -21 dBm



www.meteracom.de

28 June 2022 | Dominik Wrana | Sensitivity Analysis of a 280 – 312 GHz Superheterodyne Terahertz Link Targeting IEEE802.15.3d Applications | 7/<total>

## **3. Sensitivity Analysis** Modulated Signal Measurements



- Higher order modulation schemes require higher back-off from IP1dB due to higher peak-to-average power ratio (PAPR)
- Measured back-off in good accordance with theoretical derivation
- Manual adjustment of RF attenuation limits accuracy of Rx sensitivity measurement



www.meteracom.de

## **3. Sensitivity Analysis** Selected Results – Max. Data Rate / Spectral Efficiency / IEEE802.15.3d

|                              | Maximum performance |         | IEEE802.15.3d |        |                                                             |                                       |
|------------------------------|---------------------|---------|---------------|--------|-------------------------------------------------------------|---------------------------------------|
| Channel ID                   | -                   | -       | 44            | 54     | 25                                                          | 26                                    |
| f <sub>IF,center</sub> / GHz | 79.1                | 79.25   | 85.7          | 79.1   | 84.6                                                        | 84.6                                  |
| f <sub>RF,center</sub> / GHz | 301.2               | 304.25  | 302.4         | 300.2  | 305.6                                                       | 307.8                                 |
| Bandwidth / GHz              | 8.64                | 1.35    | 4.32          | 8.64   | 2.16                                                        | 2.16                                  |
| Data Rate / Gbit/s           | 32                  | 8       | 9.6           | 25.6   | 9.6                                                         | 11.2                                  |
| Modulation Scheme            | 32-QAM              | 256-QAM | 8-PSK         | 16-QAM | 64-QAM                                                      | 128-QAM                               |
| Constellation                |                     |         |               |        | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | · · · · · · · · · · · · · · · · · · · |
| EVM / dB                     | -23.6               | -30.8   | -20.9         | -21.4  | -27.1                                                       | -30.5                                 |
| SNR / dB                     | 19.6                | 26.3    | 20.6          | 19     | 23.5                                                        | 25.6                                  |

- Maximum datarate of 32 Gbit/s (BW limited by E-band freq. extension)
- Sufficient linearity to support up to 256-QAM
- Compliance with the IEEE802.15.3d frequency standard



## **3. Sensitivity Analysis** Analysis of Spurious Tones in the RF Domain





## 3. Sensitivity Analysis Analysis of Spurious Tones in the RF Domain – LO Generation with X8 Module



www.meteracom.de

28 June 2022 | Dominik Wrana | Sensitivity Analysis of a 280 – 312 GHz Superheterodyne Terahertz Link Targeting IEEE802.15.3d Applications | 12/<total>

## **3. Sensitivity Analysis** Analysis of Spurious Tones in the RF Domain



 $\rightarrow$  even with spectrally pure IF and LO input signals unwanted spurious tones are present!



www.meteracom.de

## **3. Sensitivity Analysis** Analysis of Spurious Tones in the RF Domain – Effect on Transmission Quality

- Short-range wireless transmission experiment using E-band modems
- Full-duplex link
- Channel bandwidth of 2 GHz





- Channel center frequencies:
- Used corresp. f<sub>LO</sub>:
- Resulting 4<sup>th</sup> harm. frequencies:

286.2 / 288.36 / 290.52 GHz 71.358 / 72.078 / 72.798 GHz 285.43, 288.31 and 291.19 GHz





www.meteracom.de

## 4. Conclusion

• Fully-integrated superheterodyne Tx / Rx chipset was shown

- Performed sensitivity analysis indicates
  - I. optimum operation points
  - II. Max. achievable data rate
  - III. use of higher order modulation schemes is possible
  - IV. Feasable link distance for long-range demonstration
- severness of spurious tones arising from non-ideal LO and IF signal generation demonstrated in wireless transmission experiment



## Thank you very much for your Attention



E-Mail: t.kuerner@tu-bs.de

Deutsche DF( Forschungsgemeinschaft German Research Foundation



www.meteracom.de

28 June 2022 | Dominik Wrana | Sensitivity Analysis of a 280 – 312 GHz Superheterodyne Terahertz Link Targeting IEEE802.15.3d Applications | 16/<total>