THz Physical Layer Security

Edward Knightly http://networks.rice.edu

Internet Security

- Confidentiality goal
 - if an Eavesdropper (Eve) intercepts the message, the bits appear to be random.
 - Only Bob can decode the message with the secret key

Multi-Layer Security Today

Application layer end-to-end encryption

Secure Socket Layer (SSL) and https

Net

Network layer

IPSec and VPNs

AES 256

Why Multi-Layer?

Redundant protection in case of one layer's breach

Physical Layer Security

- Why do we need it?
 - Wireless broadcast is the most vulnerable component
- Goal of PHY security
 - Eavesdropper (Eve) cannot intercept the bits at all
 - A new foundational layer of security

Physical Layer Security

- Why do we need it?
 - Wireless broadcast is the most vulnerable component
- Goal of PHY security
 - Eavesdropper (Eve) cannot intercept the bits at all
 - A new foundational layer of security

Secure Wireless at mmWave and Beyond

- Can a sufficiently narrow beam thwart eavesdropping?
- Optimism:
 - "At 60 GHz, the signal overshoot is very low and hence it is possible to make this communication link covert"
 - "Due to mm-wave's inherently low beam widths ... the technology has a low probability of intercept and detection which is vital for the transference of **confidential** material."
 - "Narrow beam antennas provide security that prevents signals from being intercepted."

Securing Highly Directional Links

- Alice and Bob have a highly directional link
- Immune from eavesdropping and man-in-the-middle attacks?

BOE

New Threat: MSITM Attack "MetaSurface In The Middle"

- Strong adversary uses a metasurface to manipulate electromagnetic waves
- Eavesdropper lets Alice and Bob communicate while diffracting a portion of energy towards herself

New Threat: MSITM Attack "MetaSurface In The Middle"

- Strong adversary uses a metasurface to manipulate electromagnetic waves
- Eavesdropper lets Alice and Bob communicate while diffracting a portion of energy towards herself
- Research questions
 - Eve's Metasurface design
 - Transmissive substrate
 - Meta atom structure as building block
 - Arrangement of different atoms on surface
 - Fabrication for > 100 GHz
 - Experimental evaluation at Eve and Bob

Z. Shaikhanov et al., "Metasurface-in-the-Middle Attack: from Theory to Experiment," ACM WiSec 2022.

MSITM Design Principle

- Eve targets θ towards herself
- Anomalous diffraction via Generalized Snell's Law
 - Position dependent phase discontinuity at surface
- She must design the surface to manipulate the incoming wave's spatial phase profile $\phi(x)$

Constructing MSITM (Meta) Atom by Atom

- Material analogy
 - Atomic structure controls refractive index n
 - Structure's shape can realize non-uniform phase delay
- Meta Atom design
 - Split Ring Resonator
 - Sub-wavelength size metallic structure
 - Parameters: radius r, opening angle α , orientation angle β
- Atom-by-atom selection
 - Eve has full 2π phase control

Eve's Supercell and Surface Design

- Constant phase gradient $\frac{d\phi}{dx} = \frac{2\pi}{\Gamma}$ to yield desired θ
- Eve places meta-atoms on surface in periodic columns - Spatial period $\Gamma = 8$ meta atoms over 6.1 mm
- Imperfect (non-constant) amplitude profile

MSITM Fabrication

- Traditional methods: photolithography
 - Ultrahigh resolution (~100 nm) but high cost and slow
- Eve's method: rapid and inexpensive fabrication
 - Hot stamping on paper substrate
 - 1. Print pattern on paper substrate (transmissive surface)
 - 2. Feed metal foil and printed paper through laminator
 - 3. Heat and pressure bond metallic powder and toner

H. Guerboukha et al., "High-volume rapid prototyping technique for terahertz metallic metasurfaces," Optics Express, 29, 13806-13814 (2021).

Experimental Evaluation Scenario

- Table top setup with sub micro-watt transmit power
 Wideband THz pulses via Terametrix T-Ray 5000
- Eve prototypes hot-stamped MSITM
 - Specs: center frequency 150 GHz, Eve at $\theta = 22^{\circ}$
- Bob is broadside to the MSITM

Reception at Eve

- Eve positions herself $\theta = 22^{\circ}$ away from Bob
- Without the MSITM, Eve cannot detect Alice

Eve Declares Victory

- Eve positions herself $\theta = 22^{\circ}$ away from Bob
- Without the MSITM, Eve cannot detect Alice
- With MSITM 20-40 dB gain, over > 100 GHz

Can Bob Detect the Attack?

- If the Alice-Bob link is blocked, they will not use it
- If the MSITM leaves a footprint, Bob will discover it

Can Bob Detect the Attack?

- If the Alice-Bob link is blocked, they will not use it
- If the MSITM leaves a footprint, Bob will discover it
- MSITM attenuates Bob's link by a few dB
 - No sharp resonance
 - The MSITM will be difficult to distinguish from small-scale mobility

Security Takeaway

- High frequencies and high directivity provide both new security capabilities and threats
- Meta-Surface In The Middle (MSITM) attack
 - New vulnerability above 100 GHz
- Research questions
 - Programmable MSITM
 - Counter mechanisms
 - Sensing at Alice and Bob
 - Security-aware control-plane training
 - Counter-counter strategies
 - Actively securing links with metasurfaces

My Research Interests: Wireless Networking, Sensing, and Security

Network devices, architectures and control

Mobile networks on a mission

Securing networks from eavesdroppers, jammers, and wireless adversaries

Acknowledgements

- Ph.D. students and alumni at <u>http://networks.rice.edu</u>
- Collaborator
 - Dan Mittleman at Brown University
- Sponsors

