

How image reconstruction can improve THz communications A compressed sensing-assisted device discovery approach

Tobias Doeker

1st International Workshop on Metrology for THz Communications, Braunschweig, 28 June 2022

- Motivation
- Introduction to device discovery
- Why compressed sensing?
- Improvements of device discovery
- Outlook

Motivation

- Introduction to device discovery
- Why compressed sensing?
- Improvements of device discovery
- Outlook

Motivation

- "...6G research should look at the problem of transmitting up to 1 Tbps per user. This
 is possible through the efficient utilization of the spectrum in the THz regime...."
- THz communications needs highly directive antennas due to the high path loss
- Precise alignment between TX and RX necessary → *device discovery* crucial

60

- Motivation
- Introduction to device discovery
- Why compressed sensing?
- Improvements of device discovery
- Outlook

Two step approach

T. Doeker, P. Reddy Samala, P. S. Negi, A. Rajwade and T. Kürner, "Angle of Arrival and Angle of Departure Estimation Using Compressed Sensing for Terahertz Communications," *15th Eu. Conf. Ant. Propag. (EuCAP)*, 2021, pp. 1-5, doi: 10.23919/EuCAP51087.2021.9411406.

- 1. Scanning environment with low angular resolution
 - \rightarrow Finding sector with highest received power
- 2. Scanning environment in dedicated sector with high angular resolution
 - → Finding angle of departure (AOD) / angle of arrival (AOA) combination with highest received power

- Motivation
- Introduction to device discovery
- Why compressed sensing?
- Improvements of device discovery
- Outlook

Compressed sensing

- Method to reconstruct unknown signal vector x from known measurement vector y
- Known from signal processing and image reconstruction

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$
 $\mathbf{x} \in {\rm I\!R}^n$ $\mathbf{y} \in {\rm I\!R}^m$

• *A* is the measurement matrix

 $\mathbf{A} \in {\rm I\!R}^{m imes n}$

- Due to dimension constraints, conventional techniques fail
- Prerequisite: Sparsity of x

Power angular profile

- Multipath components (vectorized) = signal vector
- Antenna Diagram (with different orientations) are basis for measurement matrix
- Power angular profile (vectorized) = measurement vector

Power angular profile

- Multipath components (vectorized) = signal vector
 - Antenna Diagram (with different orientations) are basis for measurement matrix
- Power angular profile (vectorized) = measurement vector

- Motivation
- Introduction to device discovery
- Why compressed sensing?
- Improvements of device discovery
- Outlook

First results

T. Doeker, P. Reddy Samala, P. S. Negi, A. Rajwade and T. Kürner, "Angle of Arrival and Angle of Departure Estimation Using Compressed Sensing for Terahertz Communications," *15th Eu. Conf. Ant. Propag. (EuCAP)*, 2021, pp. 1-5, doi: 10.23919/EuCAP51087.2021.9411406.

- Ray-tracing based simulations
- Four different scenarios [line-of-sight (LOS) and non line-of-sight (NLOS) with each few and many multipath components (MPCs)] are investigated
- Six different angular resolutions
- Comparison between exact and predicted direction (error with respect to the angular resolution γ)

First results

T. Doeker, P. Reddy Samala, P. S. Negi, A. Rajwade and T. Kürner, "Angle of Arrival and Angle of Departure Estimation Using Compressed Sensing for Terahertz Communications," *15th Eu. Conf. Ant. Propag. (EuCAP)*, 2021, pp. 1-5, doi: 10.23919/EuCAP51087.2021.9411406.

- Ray-tracing based simulations
- Four different scenarios [line-of-sight (LOS) and non line-of-sight (NLOS) with each few and many multipath components (MPCs)] are investigated
- Six different angular resolutions
- Comparison between exact and predicted direction (error with respect to the angular resolution γ)

28 June 2022 | Tobias Doeker | Compressed sensing-assisted device discovery | 13/<total>

First results

T. Doeker, P. Reddy Samala, P. S. Negi, A. Rajwade and T. Kürner, "Angle of Arrival and Angle of Departure Estimation Using Compressed Sensing for Terahertz Communications," *15th Eu. Conf. Ant. Propag. (EuCAP)*, 2021, pp. 1-5, doi: 10.23919/EuCAP51087.2021.9411406.

- Ray-tracing based simulations
- Four different scenarios [line-of-sight (LOS) and non line-of-sight (NLOS) with each few and many multipath components (MPCs)] are investigated
- Six different angular resolutions
- Comparison between exact and predicted direction (error with respect to the angular resolution γ)

28 June 2022 | Tobias Doeker | Compressed sensing-assisted device discovery | 14/<total>

Influence of the antennas

T. Doeker and T. Kürner, "Influence of the Initial Antenna Orientation on the Performance of Compressed Sensing-assisted Device Discovery," *2021 Kleinheubach Conference*, 2021, pp. 1-4, doi: 10.23919/IEEECONF54431.2021.9598425.

• PAP / angular spread depends on antenna pattern and initial antenna orientation

no side lobes

with side lobes

initial antenna orientation $\alpha_0 = -5^\circ$

initial antenna orientation $\alpha_0 = -15^\circ$

- Same simulation scenarios as before
- Three different antennas (no / few / strong side lobes)
- Changing initial antenna orientation

- Motivation
- Introduction to device discovery
- Why compressed sensing?
- Improvements of device discovery
- Outlook

Outlook

- Compressed sensing can assist device discovery
- Full potential from compressed sensing approach currently not exploited
- Possibilities for improvements:
 - Different solver
 - Multiple information (MIMO)
- Acceleration of processing (e.g., segmentation of reconstruction)

Thank you very much for your Attention

E-Mail: t.kuerner@tu-bs.de

11

www.meteracom.de

Funded by
Deutsche
Forschungsgemeinschaft
German Research Foundation

28 June 2022 | Tobias Doeker | Compressed sensing-assisted device discovery | 18/<total>