TRACING MILLIMETER WAVES: UNLOCKING THZ COMMUNICATION'S POTENTIAL WITH ACCURACY IN BASIS RF PARAMETERS

Workshop: DFG Meteracom, 15th GeMiC Duisburg, March 2024

Dr. Gerhard Rösel, Head of the accredited R&S laboratory D-K-15195-01-00

ROHDE&SCHWARZ

Make ideas real

5 Wrap-Up

TARGET SETTING FOR THZ COMMUNICATION

Accreditation creates Trust • traceability Chain Safety Market Access **CIPM MRA** NMI Freedom of Trade • (PTB) DAkkS Deutsche Accredited Laboratory Akkreditierungsstelle D-K-15195-01-00 (Rohde & Schwarz)

TARGET SETTING FOR THZ COMMUNICATION

Target Setting for THz Communication

- 2 Challenges
- **3** Problem Solving Approaches
- 4 **Example Phase Traceability**
- 5 Wrap-Up

Uncertainty knowledge

CHALLENGES - OVERVIEW

Metrology is most traceable for basis RF parameters

R&S®NTS170TWG: Transfer Standard for

Dissemination of the unit RF power

Traceability based on Microcalorimeter

X. Shang et al., "Some Recent Advances in Measurements at Millimeter-Wave and Terahertz Frequencies: Advances in High Frequency Measurements," in IEEE Microwave Magazine, vol. 25, no. 1, pp. 58-71, Jan. 2024

R&S®NRP170TWG: Thermal Waveguide Power Sensor

CHALLENGES – AMPLITUDE

Traceability of RF power up to 170 GHz (D-Band)

CHALLENGES – PHASE NOISE

Deterioration with Increasing Frequency

CHALLENGES – PHASE NOISE (R&S[®]FSWP)

Traceability of Phase Noise (R&S Application Note: Measurement Setup for Phase NoiseTest at Frequencies above 50 GHz)

CHALLENGES – PHASE RELATION

Traceability of Phase Relation (Multisine Signal)

IEEE Recommended Practice for Estimating the Uncertainty in Error Vector Magnitude of Measured Digitally Modulated Signals for Wireless Communications," in *IEEE Std 1765-2022*, vol., no., pp.1-105, 11 Nov. 2022

Reference Receiver: Independently calibrated?

CHALLENGES – DIGITAL MODULATION

Traceability of Error Vector Magnitude

Fig. 2: Partial illustration of the general measurement setup.

T. Doeker, J. M. Eckhardt and T. Kürner, "Channel measurements and modeling for low terahertz communications in an aircraft cabin", *IEEE Trans. Antennas Propag.*, vol. 70, no. 11, pp. 10903-10916, Nov. 2022.

Fig. 3: Schematic block diagram of the channel sounder.

CHALLENGES – CHANNEL SOUNDING

Traceability of Channel Impulse Response

Target Setting for THz Communication

- 2 Challenges
- **3** Problem Solving Approaches
- 4 **Example Phase Traceability**
- 5 Wrap-Up

PROBLEM – SOLVING APPROACHES

R. H. Judaschke, M. Kehrt, K. Kuhlmann and A. Steiger, "Linking the Power Scales of Free-Space and Waveguide-Based Electromagnetic Waves," in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 11, pp. 9056-9061, Nov. 2020

Ratio of measured optical power $P_{\rm opt}$ in plane B and waveguide power $P_{\rm wg}$ in plane A divided by transmission coefficient t .

PROBLEM – SOLVING APPROACHES

Comparison of different RF power traceability chains

Struszewski, P., Pierz, K. & Bieler, M. Time-Domain Characterization of High-Speed Photodetectors. J Infrared Milli Terahz Waves 38, 1416–1431 (2017).

PROBLEM – SOLVING APPROACHES

Shortest electrical pulses traced to laser based metrology

J. W. Zobel *et al.*, "Comparison of Optical Frequency Comb and Sapphire Loaded Cavity Microwave Oscillators," in *IEEE Photonics Technology Letters*, vol. 31, no. 16, pp. 1323-1326, 15 Aug.15, 2019

SELECTED PHASE NOISE LEVELS (dBc/Hz [†])

Offset Frequency	SLCO, 3 GHz	PMO, 4 GHz	PMO, 8 GHz	PMO, 16 GHz
100 Hz	-128	-130	-123	-115
1 kHz	-149	-146	-146	-143
10 kHz	-161	-162	-164	-152
100 kHz	-168	-167	-164	-155

[†] SLCO: Sapphire loaded cavity oscillator; PMO: photonic microwave oscillator.

PROBLEM – SOLVING APPROACHES

Generation of ultralow THz noise sources by optical frequency combs

Target Setting for THz Communication

- 2 Challenges
- **3** Problem Solving Approaches
- 4 Example Phase Traceability
- 5 Wrap-Up

EXAMPLE PHASE TRACEABILITY

Evaluation of the Oscilloscope transfer function by electro-optical dirac pulse

EXAMPLE PHASE TRACEABILITY

Well known S-parameter metrology

EXAMPLE PHASE TRACEABILITY

Uncertainty analysis using fourier transformation and correlation matrices

Target Setting for THz Communication

- 2 Challenges
- **3** Problem Solving Approaches
- 4 **Example Phase Traceability**
- 5 Wrap-Up

THz communication shows a large potential for massive communication and sensing, but it needs also a massive development effort to become an industrial important advantage, as it is only one Lego brick on the way to "Made by European".

THANK YOU

ROHDE & SCHWARZ