

Traceability Challenges for Sub-THz Channel Sounding

<u>Mohanad Dawood Al-Dabbagh</u>, Diego Dupleich, Tobias Doeker, Thomas Kleine-Ostmann, David Humphreys, Reiner S. Thomä, Thomas Kürner

2nd International Workshop on Metrology for THz Communications, Duisburg, 12 March 2024

Introduction

- Measurement traceability is defined as "the property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties" [1].
- The VNA can be used as a reference measurement device to reach traceability via the calibration standards.
- Comparison into a reference device can rule out the environmental influences related to multi-path, and absorptions.

Measurement Traceability Steps

Theoretical Calculations can also be used as a reference to verify the measured values.

General Terms in Metrology. 2. Geneva, Switzerland: ISO; 1993.

[1] International Organization for Standardization. International Vocabulary of Basic and

www.meteracom.de

12 March 2024 | M. D. Al-Dabbagh| Traceability Challenges for Sub-THz Channel Sounding | 2/19

Introduction

0.4

Distance in meters

305 GHz

0.45

0.5

0.55

0.35

www.meteracom.de

Sub-THz Channel Measuring Systems

Channel Sounding System at 187.5 GHz, 7.5 GHz bandwidth at TU-Ilmenau

Channel Sounding System at 304 GHz, 9.2 GHz bandwidth at TU-Braunschweig

Verctor Network Analyzer at WR05, and WR03 frequency bands at PTB

www.meteracom.de

12 Mar 2024 | M. D. Al-Dabbagh| METERACOM 2nd International Workshop – Duisburg, Germany | 4/19

The seven-term VNA error model

List of error coefficients of seven-term error model.

Symbol		Error Coefficient
Forward	Reverse	
E ₀₀	E ₃₃	Directivity
<i>E</i> ₀₁	$E_{32}E_{23}$	Reflection tracking
<i>E</i> ₁₁	E ₂₂	Source match
E ₃₀	E ₀₃	Isolation
W ₀₀	W ₃₃	Switch terms
	(110	

Four-receiver VNA architecture.

[2] Zeier, M., D. Allal, and R. Judaschke. "EURAMET Calibration Guide No. 12: Guidelines on the Evaluation of Vector Network Analysers (VNA)." European Association of National Metrology Institutes, Braunschweig 3.

11

www.meteracom.de

12 Mar 2024 | M. D. Al-Dabbagh| METERACOM 2nd International Workshop – Duisburg, Germany | 5/19

VNA Additional Error Terms

List of additional influence quantities in the measurement model

Symbol	Description
N_L	Noise Floor
N_H	Trace Noise
L	Non-Linearity
<i>D</i> ₀₀	Drift of Directivity
D_{01}	Drift of reflection Tracking
D ₁₁	Drift of Source Match
$C_{00}C_{11}$	Reflection of Cable and connector
$C_{01}C_{10}$	Transmission of cable and connector

[2] Zeier, M., D. Allal, and R. Judaschke. "EURAMET Calibration Guide No. 12: Guidelines on the Evaluation of Vector Network Analysers (VNA)." European Association of National Metrology Institutes, Braunschweig 3.

1)

111

www.meteracom.de

12 Mar 2024 | M. D. Al-Dabbagh | METERACOM 2nd International Workshop – Duisburg, Germany | 6/19

VNA Calibration Standards

VNA Magnitude and Phase Drift

Far-field Antenna Measurement setup at PTB

11

1)

12 Mar 2024 | M. D. Al-Dabbagh | METERACOM 2nd International Workshop – Duisburg, Germany | 8/19

VNA PDP Drift

11

Far-field Antenna Measurement setup at PTB

110

12 Mar 2024 | M. D. Al-Dabbagh| METERACOM 2nd International Workshop - Duisburg, Germany | 9/19

VNA Connection Repeatability

Waveguide artifact at WR05

Waveguide artifact repeatability (a) Magnitude (b) Phase

12 Mar 2024 | M. D. Al-Dabbagh | METERACOM 2nd International Workshop – Duisburg, Germany | 10/19

www.meteracom.de

Antenna Phase Center

Method 1: Horn Antenna Phase Center Theoretical Calculation

Equi-phase Front Horn antenna phase center illustration

Horn antenna parameters for phase center calculation

Horn antenna phase center calculation at (a) WR05 and (b) WR03 bands

[3] E. Muehldorf, "The phase center of horn antennas," IEEE transactions on antennas and propagation, vol. 18, no. 6, pp. 753-760, 1970.

www.meteracom.de

12 Mar 2024 | M. D. Al-Dabbagh | METERACOM 2nd International Workshop – Duisburg, Germany | 11/19

Antenna Phase Center

Method 2: Distance Measurement and Gain Matching Using Transmission Magnitude and PDP

METERALOM

www.meteracom.de

12 Mar 2024 | M. D. Al-Dabbagh | METERACOM 2nd International Workshop – Duisburg, Germany | 12/19

Antenna Phase Center

Method 3: Phase Center Rotation and PDP Delay Calculation

www.meteracom.de

12 Mar 2024 | M. D. Al-Dabbagh| METERACOM 2nd International Workshop - Duisburg, Germany | 13/19

×

10

10

1.086

1.084

1.082 1.08

1.078 1.076

0

Norm. Rad. Pattern

PDP Delay Shift (w./o. Nulls)

PDP Delay Shift (w. Nulls)

Azimuth in degrees

20

20

Calculated PDP delay shift β=6.5mm

30

---- WR03 Horn Radiation

30

40

40

50

50

Antenna Reference Plane Shift

www.meteracom.de

12 March 2024 | M. D. Al-Dabbagh| Traceability Challenges for Sub-THz Channel Sounding | 14/19

Channel Sounding System Principle

Up- and Down-conversion principle from extended UWB-band

11

www.meteracom.de

Received Spectum

Calibrated + Hann Window

-1

0

Frequency in Hz

Received Spectrum at 1 m LoS distance, before and

1

2

3

 $\times 10^{9}$

Calibrated

-2

after calibration at 187.5 GHz

-3

0

-50

-100

-150

-200

Normalized Magnitude in dB

Channel Sounder and VNA Reference Measurements

Reference waveguide cascade photograph using VNA

Reference waveguide PDP measurement using VNA and CS

www.meteracom.de

12 Mar 2024 | M. D. Al-Dabbagh| METERACOM 2nd International Workshop – Duisburg, Germany | 16/19

Channel Sounder's Spectrum

Measurement Bandwidth investigation

WR03 channel sounder's combined distances difference from VNA measured values in terms of characterized bandwidth

RECON www.meteracom.de

Channel Sounder's Feasible Spectrum

Measurement Bandwidth investigation

(a)

Thank you very much for your Attention

www.meteracom.de

12 March 2024 | M. D. Al-Dabbagh| Traceability Challenges for Sub-THz Channel Sounding | 19/19