

Channel Sounder Architectures for Performance Evaluation of THz Systems

Jonas Gedschold, Diego Dupleich, Carla Reinhardt, Tobias Doeker, Giovanni Del Galdo, Reiner S. Thomä, Thomas Kürner 2nd International Workshop on Metrology for THz Communications, Duisburg, 12 March 2024

What is this talk about?

SNR and dynamic range of a THz channel sounder

- Baseband Waveform Design
- Automatic Gain Control and its Impact on Directional Channel Sounding
- Real-Time/Time-Variant Sounding

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 2/17

Goal of Channel Sounding

• Characterize the structure of a multipath propagation channel

(device independent)

RICHTER, Andreas, 2005. Estimation of Radio Channel Parameters [online]. https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2005000111

- Allows to test performance of THz systems against channel
- System identification problem: excitation at system input and acquisition/processing of system output crucial

- Smaller wavelengths and corresponding antenna designs lead to shrinking effective antenna apertures
- Friis' transmission equation

$$\frac{P_r}{P_t} = \frac{A_r A_t}{d^2 \lambda^2}$$
 and $A_{isotr.} = \frac{\lambda^2}{4\pi}$

- $P_r, P_t:$ received and transmitted power
- A_t, A_r : effective antenna area
- λ : wavelength
- d: distance between antennas
- Building larger antennas/arrays increases gain → antenna orientation is critical
- Challenge: SNR, dynamic range

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 3/17

Baseband Waveform Design

- Automatic Gain Control and its Impact on Directional Channel Sounding
- Real-Time/Time-Variant Sounding

Waveform design for channel sounding

Waveform design criteria: Peak-to-Average Power Ratio (PAPR)

- Important for nonlinear systems such as amplifiers
- Exploit linear dynamic range of analog components
- A smaller PAPR allows to transmit higher **power**

1)

- The matched filter SNR only depends on the signal power irrespective of the actual waveform
- Degrees of freedom to optimize waveform for parameter estimation

Matched filter output

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 6/17

Power spectrum optimization for parameter estimation

- Use degrees of freedom to maximize how informative the measurements are wrt the model parameters
- Optimize estimator statistics for ToF parameters τ :
 - Bias = $\mathbf{E}[\tilde{\tau}] \tau = 0$ (assumption)
 - Variance = $\mathbf{E}[(\tilde{\tau} \tau)^2]$ (for unbiased estimators)

www.meteracom.de

 Inverse Fisher Information (Cramér-Rao bound) defines the lower limit for the variance

$$\mathbf{F}_{\tau_m} \propto \mathrm{SNR} * B_{\mathrm{eff}}^2$$

- Bandwidth can compensate SNR to some degree
- Goal: Waveform with high Fisher information

Power spectra

 Orange: iterative optimization of the Fisher information matrix (given initial knowledge about the scenario)

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 7/17

Waveform design with arbitrary power spectra

- Frequency-modulated waveforms are well-known from communications: OFDM-like **multicarrier signal**
- Strictly bandlimited and periodic
- Instead of modulating data onto each carrier, we design power and phase to optimize sounding performance
- Baseband architecture: SDR/AWG

Power spectrum

• Evaluate dispersion function: how much should each carrier be amplified/attenuated

$$\nu[k] = \operatorname{trace}\left(\mathbf{F}^{-1}(\mathbf{X}) \cdot \mathbf{F}(\widetilde{\mathbf{X}}_{k})\right)$$

k: carrier index, F: Fisher information matrix, X: carrier weights, \widetilde{X}_k : single carrier input

E. Van den Eijnde and J. Schoukens, "On the design of optimal excitation signals," IFAC Proceedings Volumes, vol. 24, no. 3, pp. 1139–1144, 1991, 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation 1991, Budapest, Hungary, 8-12 July 1991

Phase spectrum

- Fisher information only depends on the power spectrum
- Phase spectrum for minimum PAPR: Newman or Schroeder phase design, time-domain clipping, ...

M. Schroeder, "Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (corresp.)," IEEE Trans. Inf. Theory, vol. 16, no. 1, p. 85–89, Jan. 1970

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 8/17

Parameter estimation with optimized waveforms

- Matched filter output depends on waveform ACF
- ACF results from the power spectrum of the waveform
- The ACF may have strong sidelobes which can cover weaker propagation paths
- Signal-interference ratio is degraded
- Data model needs to account for the waveform
- After the estimation of one propagation path, its influence (full ACF) can be **subtracted** from the data revealing weaker propagation paths

Iterative path search (e.g. part of the RIMAX algorithm)

1)

www.meteracom.de

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 9/17

- Baseband Waveform Design
 - Several degrees of freedom for waveform optimization
 - > Power spectrum can improve theoretical performance limits for ToF estimation
 - > **High effective** bandwidth is beneficial
 - Baseband architecture: SDR/AWG
- > Automatic Gain Control and its Impact on Directional Channel Sounding
- Real-Time/Time-Variant Sounding

Dynamic range in directional channel sounding

- Goal: Achieve omnidirectional view on the channel by rotating high-gain antennas
- Channel is **sparse** in the spatial domain
- Large difference on received power from angular-toangular scan (LOS, strong/weak scatterer, no scatterer)
- Strong requirement on dynamic range at the receiver
- AGC is fundamental to avoid non-linearities

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 11/17

Dynamic range in directional channel sounding

- A compensation of the AGC at the RX is necessary
- This leads to different noise floor amplifications
- When synthesizing an omnidirectional pattern from the individual scans, the dynamic range is reduced
- Weak paths could be masked
- > **Denoising** is required before the synthesis
- Signal detection, model-based estimation, …
- Does not increase dynamic range for a single scan

www.meteracom.de

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 12/17

- Baseband Waveform Design
 - Several degrees of freedom for waveform optimization
 - > Power spectrum can improve theoretical performance limits for ToF estimation
 - > **High effective** bandwidth is beneficial
 - Baseband architecture: SDR/AWG
- > Automatic Gain Control and its Impact on Directional Channel Sounding
 - > AGC compensations leads to varying noise floor amplifications
 - Denoising is necessary for comparison/combination
- Real-Time/Time-Variant Sounding

TUBS channel sounder

real construction of the c

ME

www.meteracom.de

Parameter	Value
Clock	9.22 GHz
Bandwidth	≈ 8 GHz
Chip duration	108.5 ps
Order of M-sequence	12
Sequence length	4095
Sequence duration	444.14 ns
Subsampling factor	128
Measurement time per CIR	56.9 µs
Measurement rate	17,590 CIR/s
Center frequencies	9.2 / 64.3 / 304.2 GHz
SISO/MIMO	Up to 4x4

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 14/17

Real-Time measurements

- Sounder setup allows to measure dynamic
 scenarios, e.g., due to moving TX, RX or objects
- No coherent averaging during the measurement run for maximum time resolution (dynamics unknown)
- SNR is too low for evaluation
- Determination of the coherence time of the channel allows averaging in post processing over intervals where the channel behaves WSS
- Tradeoff between SNR and velocity in the channel

• Join the poster session for more details: Channel Measurements in an Industrial Environment for Access Point-to-Sensor Communication at 300 GHz

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 15/17

- Baseband Waveform Design
 - Several degrees of freedom for waveform optimization
 - > Power spectrum can improve theoretical performance limits for ToF estimation
 - High effective bandwidth is beneficial
 - Baseband architecture: SDR/AWG
- > Automatic Gain Control and its Impact on Directional Channel Sounding
 - > AGC compensations leads to varying noise floor amplifications
 - Denoising is necessary for comparison/combination
- Real-Time/Time-Variant Sounding
 - Averaging only if channel behaves WSS
 - tradeoff between SNR and measurement rate

Thank you very much for your Attention

11

References

- 1. Jonas Gedschold, Sebastian Semper, Michael Döbereiner, et al. Excitation Signal Design for THz Channel Sounding and Propagation Parameter Estimation. *TechRxiv.* December 22, 2023.
- D. Dupleich, R. Müller and R. Thomä, "Practical Aspects on the Noise Floor Estimation and Cut-off Margin in Channel Sounding Applications," 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 2021, pp. 1-5, doi: 10.23919/EuCAP51087.2021.9411409.
- Carla E. Reinhardt, Varvara V. Elesina, Johannes M. Eckhardt, Tobias Doeker, Lucas C. Ribeiro, Thomas Kürner "Channel Measurements in an Industrial Environment for Access Point-to-Sensor Communication at 300 GHz" – GeMIC 2024

12 March 2024 | Jonas Gedschold | Channel Sounder Architectures for Performance Evaluation of THz Systems | 18/17