

FOR 2863 Meteracom Metrology for THz Communications

Development considerations for traceability of h-band THz communication waveforms

David A. Humphreys^{1,2}, Adam Kuchnia¹, and Heiko Füser¹

¹Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany

²School of Electrical, Electronic and Mechanical Engineering, University of Bristol, BS8 1QU, Bristol, UK

DFG FOR2863 Meteracom Final Workshop @ IRmmW-THz 2025, 20 August 2025

Overview

- Traceability for modulated waveforms options and requirements
- Evaluation of an existing prototype device
- Proof of principle
- Modelling
- Improving the design to meet the traceability requirements
- Antenna behaviour
- Frequency flatness/measured results
- New prototype design
- Modelling
- Realising semi-infinite GaAs
- Connection options
- Summary

Overview

- Traceability for modulated waveforms options and requirements
- Evaluation of an existing prototype device
- Improving the design to meet the traceability requirements
- New prototype design
- Dual polarisation?
- Summary

SI A A

Traceability

- Metrological Traceability or Measurement Traceability is a "property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty." [1]
- Measurement traceability is important because it gives you confidence and assurance that your measurement results agree with national or international standards within the statement of uncertainty in measurement. Without traceability, a laboratory can claim anything they want in a test or calibration report.
- How do you achieve confidence in the result?

www.meteracom.de

20 August 2025 | D A Humphreys| Development considerations for a THz waveform traceability for h-band communication | 4/16

Instrument-based approach to traceability

ob kg n

- Candidates:
- modulation capable VNA systems
- v(t) calibrated AWG + oscilloscope
- Limitations:
- v(t) comb and coaxial instrumentation limited to 165 GHz [2]
- Mixers can be used for up and down-conversion so identical devices can determine group delay
- Limitations:
- Inherently nonlinear other terms present (visible if different IF frequencies used)
- Ideally, 3 or more devices required
- Overall: Good solution for industry and research applications

Figure 1: Mixer Measurement System Block Diagram

[3] Joel Dunsmore, "A New Calibration Method for Mixer Delay Measurements that Requires No Calibration Mixer", Proc. 41st European Microwave Conference, 11 Oct 2011 Also see Application note PNA-X 1408-23.

VNA can be used in place of AWG/RTDO

www.meteracom.de

20 August 2025 | D A Humphreys| Development considerations for a THz waveform traceability for h-band communication| 5/16

²A. Schramm, F. Gellersen, F. Rausche and K. Kuhlmann, "Traceable S-Parameter Measurements Up to 165 GHz Using 0.8 mm Coaxial Standards," in IEEE Microwave and Wireless Technology Letters, vol. 35, no. 6, pp. 936-939, June 2025, doi: 10.1109/LMWT.2025.3562419.

Physics-based approach

SI AT A

Baseband

- Suitable for NMI use
- Based on v(t) EOS/Photo-conductive switch knowledge
- Key requirements
- Target operation at 100 GHz and 300 GHz
- Sufficient operating bandwidth (5-10 GHz)
- Frequency/phase flat over operating frequency range
- Good antenna characteristics
- Some way to independently test the device (EOS)
- Device can be modelled
- Operation
- Current across the photoconductor gap is proportional to the voltage(t) across the gap, Each RF frequency component is down-converted to ±38 MHz baseband

www.meteracom.de

20 August 2025 | D A Humphreys| Development considerations for a THz waveform traceability for h-band communication| 6/16

 $RF \rightarrow$

Existing prototype – proof of principle

SI SI

- LT-GaAs Photoconductor and Bow-Tie antenna available (P774)
- Six devices (1 mm x 2mm) on a single substrate
- Proof of principle/Evaluation of an existing prototype device [4]

~ 100 GHz THz mm-Wave source

Existing device modelling (P774)

SI A

- Impedance match S₁₁ (Z₀=50 Ω) modelled in CST for single and six devices on 500 µm GaAs substrate
- Antenna impedance from S₁₁ at resonant frequency
- Semi-infinite substrate approximations do not apply:
 Antenna (2 mm x 1 mm) and GaAs substrate
 (500µm) [4]
- (a) and (b) show the reduction in resonant frequency due to GaAs dielectric (see also (d))
- (c) shows a complex radiation pattern compared with
 (b). This is attributed to multiple modes and reflections at the substrate GaAs/air interface
- Prototype device operation at 100 GHz is a harmonic response. The antenna will support multiple modes
- An antenna needs to be much smaller for 100 GHz fundamental and 300 GHz harmonic operation
- Good impedance matching at the GaAs/air interface is essential. A thicker substrate may also help

www.meteracom.de

20 August 2025 | D A Humphreys| Development considerations for a THz waveform traceability for h-band communication | 8/16

Measurement and modelling results for (P774) device

- Power scales are very different
- The upper plot shows measurements of CW power vs. frequency; the RF beam is divergent and not focussed
- The lower plot shows a simulation of the total radiated power vs. frequency. In this plot, the variations are much lower, suggesting that the overall radiation pattern is frequency dependent.
- Normalised radiated power proportional to 1-|S₁₁|²
- Measured power excursions >30 dB
- Possible radiated pattern variation

Revised device design

- Modelled antenna 450 μm long x 150 μm wide 10 μm x 10 μm gap
- Semi-infinite GaAs (b & d) or 500 µm (a & c) GaAs substrate
- No connections modelled (too small to wire-bond)
- Antenna on semi-infinite GaAs shows smooth antenna pattern
- |S₁₁|² response corresponds to total radiated and absorbed power (e)

20 August 2025 | D A Humphreys| Development considerations for a THz waveform traceability for h-band communication| 10/16

SI A A

- Approximation to semi-infinite device is required
- Thick substrate >> antenna dimensions (unconstrained E-fields)
- Minimise reflection from the first Air/GaAs interface to minimise Etalon reflections
- Small antenna will require less substrate material, but the THz radiation may need to be focussed
- ε_r of suitable THz materials to minimise reflections Fresnel calculations (narrow-band solution). THz matching layer thickness much higher than optical equivalent [5-6]
- Thin metal layer approach may offer a broadband response.
 44nm Indium Tin Oxide on GaAs minimises reflection over 400 GHz 4.5 THz [7]
- A two-part solution is proposed: polished Antenna/substrate (500 µm) and GaAs window (3-4 mm) with matching material layers/coating. Different matching/coating layers can be evaluated with the same device

510 μm thick gallium-arsenide with an indium tin-oxide film. (lines – simulation) from [1]

Internal reflection from the back GaAs interface. Single layer (465 μ m PMMA) gives $E_{reflect}$ 16% at 100, 300 GHz. Dual layer (184 μ m glass, 339 μ m PMMA) gives $E_{reflect}$ 0.074% at 100 GHz.

www.meteracom.de

20 August 2025 | D A Humphreys| Development considerations for a THz waveform traceability for h-band communication| 11/16

RF

Amplifier

line

RF

Amplifier

Balun

DC/RF Connection options

- Small device (450 µm long for 100 GHz) Bondwire solution is impractical
- Mixing device so RF signal not used loading the RF signal reduces sensitivity
- (a) thin (inductive) lines connected to the ends of the antenna elements - large H antenna loop, may affect the antenna characteristics
- (b) Transmission line connection negligible H antenna loop, may load the antenna at THz RF frequency
- Lines and gaps limited to about 10 µm (dust etc)
- Similar mapping to coplanar line geometry
- Impedance may be tailored to optimise Z(f) at selected frequencies.
- 2nd prototype device 450 µm long x 150 µm wide 10 µm x 10 µm gap fabricated

Dual polarisation Photoconductive device proposal

 The photoconductor is not restricted to operating in a single direction, so the RF radiation could contain both horizontal and vertical polarisation components.

 Photoconductive excitation is synchronous for both polarisation-states. The result is a superposition, and the carriers move under combined electric field

 Bow-Tie antennas have a degree of cross-polarisation sensitivity (which can be calibrated)

Critical optical alignment

 $\mathsf{E}_{\mathsf{vertical}}$

www.meteracom.de

20 August 2025 | D A Humphreys| Development considerations for a THz waveform traceability for h-band communication| 13/16

E_{horizontal}

Summary

- Summary of guided-wave and free-space options for Traceability of modulated waveforms
- Evaluated and modelled an existing prototype Bow-Tie photoconductive antenna device
- Demonstrated Proof of principle with CW THz
- Modelling shows response-flatness problems linked to reflection from a finite substrate thickness
- Narrowband and broadband compensation for reflections from the substrate/air interface
- DC/IF connection strategies
- Outlined strategy for a dual polarisation device
- See Posters (workshop and conference) for further details
- Outstanding tasks
- Prototype device fabricated. Testing in progress
- Test demountable Reflection mitigation strategies (CW)
- Measurements of modulated (nQAM or QPSK) waveforms

References

- 1. BIPM, "VIM: International Vocabulary of Metrology basic and general concepts and associated terms (2012)," Available at: https://doi.org/10.59161/JCGM200-2012
- 2. A. Schramm, F. Gellersen, F. Rausche and K. Kuhlmann, "Traceable S-Parameter Measurements Up to 165 GHz Using 0.8 mm Coaxial Standards," in IEEE Microwave and Wireless Technology Letters, vol. 35, no. 6, pp. 936-939, June 2025, doi: 10.1109/LMWT.2025.3562419.
- 3. J. Dunsmore, "A new calibration method for mixer delay measurements that requires no calibration mixer," in 2011 41st European Microwave Conference, 2011, pp. 480–483.
- 4. H. Füser, "Terahertz frequency combs and terahertz steering," Ph.D. dissertation, Technische Universität Braunschweig, 2014.
- Zhai, M., Locquet, A. & Citrin, D.S. Terahertz Dielectric Characterization of Low-Loss Thermoplastics for 6G Applications. Int J Wireless Inf Networks 29, 269–274 (2022). https://doi.org/10.1007/s10776-022-00554-x
- 6. A. Hirata, K. Suizu, N. Sekine, I. Watanabe and A. Kasamatsu, "Measurement of Glass Complex Permittivity at 200-500 GHz for THz Propagation Simulation," 2020 International Symposium on Antennas and Propagation (ISAP), Osaka, Japan, 2021, pp. 617-618, doi: 10.23919/ISAP47053.2021.9391155.
- 7. Kröll J, Darmo J, Unterrainer K. Metallic wave-impedance matching layers for broadband terahertz optical systems. Opt Express. 2007 May 28;15(11):6552-60. doi: 10.1364/oe.15.006552.

Thank you very much for your Attention

E-Mail: david.a.humphreys@bristol.ac.uk

