

FOR 2863 Meteracom Metrology for THz Communications

Instrumentation for Traceable Distortion Characterization of Terahertz Transceivers

Benjamin Schoch

Institute of Robust Power Semiconductor Systems, University of Stuttgart, Germany

DFG FOR2863 Meteracom Final Workshop @ IRmmW-THz 2025, 20 August 2025

Outline

- 1. Introduction and Motivation
- 2. CrossLink Measurement Platform
- 3. Superheterodyne 300 GHz Tx / Rx Frontends
- 4. Recap In-Band Interferer
- 5. Measurement Setup 300GHz Tx / Rx
- 6. EVM Degradation at Reference Planes
- 7. IMD Measurement in D-Band
- 8. Summary

Introduction and Motivation

- "Ultra-broadband" THz communication at 300 GHz
- Standardization in progress for spectrum beyond 250 GHz c.p. IEEE802.15.3d^[1], WRC2019 Final Act^[2]
- Lots of **research activities and funding initiatives** addressing 300 GHz applications, e.g. mobile backhauling, data center, industrial environments, ...
- Development and optimization of electronic analog frontends is challenging
 and requires thorough sensitivity analysis with respect to its impairments on signal quality.
- Carrier generation at THz frequencies is one source of impairments, e.g. phase noise, harmonics, ...
- Various approaches for LO generation,
 e.g. electronic frequency multiplication, photo mixing, ...
- Sophisticated measurement systems and setups as enabler from MMIC characterization to system-level performance evaluation

- Versatile platform for the characterization of transceivers and transceiver components dedicated to 6G wireless communication
- Combination of synchronous signal analysis in the time and frequency domain
- Repetitive test signals to enable vector averaging, wideband stitching, noise floor reduction
- Narrowband RF signal injection for vectorial network analysis and calibration functionality
- Hardware configuration available for

W-band (67 – 115 GHz)

D-band (110 – 170 GHz)

H-band (220 - 330 GHz)

Major Instrumentation Initiatives

VCA module enables

Exemplary source calibration (1 GBd QPSK signal in W-band, using a power amplifier as DUT)

view 1, uncalibrated

EVM = 13%

 $P_{RF} = -8 \text{ dBm}$

view 1, calibrated at 1

EVM = 1.3%

 $P_{RF} = -8 \text{ dBm}$

view 2, calibrated at 1

EVM = 4.5%

 $P_{RF} = 6 \text{ dBm}$

view 2, calibrated at 2

EVM = 0.6%

 $P_{RF} = 6 \text{ dBm}$

[4] B. Schoch et al., "Wideband Cross-Domain Characterization of a W-band Amplifier MMIC," 2023, 53rd European Microwave Conference (EuMC), Berlin

300 GHz Superheterodyne Tx / Rx

- IF range 75..95 GHz
- LO range 72..75.5 GHz
- RF range 288..320 GHz
- $P_{-1dB, Tx} = -3 dBm$
- $NF_{Rx} = 7.3 \text{ dB (sim.)}$
- $P_{DC/MMIC} = 350 \text{ mW}$

35nm InGaAs mHEMT technology $f_{\rm T}/f_{\rm max}$: > 500 GHz / > 1000 GHz

www.meteracom.de

20 August 2025 | Benjamin Schoch | Instrumentation for Traceable Distortion Characterization of Terahertz Transceivers | 8/19

[5] Dan et al., "A Superheterodyne 300GHz Transmit Receive Chipset for Beyond 5G Network Integration"

[6] Wrana et al., "Sensitivity Analysis of a 280 – 312 GHz Superheterodyne Terahertz Link Targeting IEEE802.15.3d Applications"

Superheterodyne Frequency Scheme

Recap In-Band Interferer

- Harmonics pose risk of in-band interferer for modulated signal in the RF domain
- Sever degradation of quantities like EVM and SNR
- exemplary 1.6 GBd 16-QAM signal

Metercom Workshop at GeMiC 2024 visit www.meteracom.de

www.meteracom.de

20 August 2025 | Benjamin Schoch | Instrumentation for Traceable Distortion Characterization of Terahertz Transceivers | 10/19

Measurement Setup 300GHz Tx / Rx

EVM Degradation Tx - Rx

- W-band to W-band
- Source correction capability at DUT input (R1) allows for nearly ideal input signal quality (<1% EVM_{RMS})
- Capture and demodulate at DUT output (B)
- Observation of non-linear behavior of the DUT over power

Reference Plane 1

- W-band
- EVM 0.8%
- 5 GBd
- $\alpha = 0.35$
- -5 dBm
- Fc = 88 GHz

Reference Plane 2

W-band to H-band

• EVM 4%

• 5 GBd

• $\alpha = 0.35$

• -10 dBm

• Fc = 307 GHz

Reference Plane 3

- W-band to W-band
- EVM 4%
- 5 GBd
- $\alpha = 0.35$
- -25 dBm
- Fc = 88 GHz

IMD Measurement in D-band

$$OIP3 = \left(\frac{1}{OIP3' \cdot g_2} + \frac{1}{OIP3''}\right)^{-1}$$

Table 1. Measured OIP3 points of the measurement setup and different DUT.

	OIP3 _{meas}	OIP3 _{corr} *
measurement setup	13.06 dBm	-
amplifier #1	21.22 dBm	23.39 dBm
amplifier #2	17.62 dBm	18.95 dBm
cascaded amplifier	20.32 dBm	21.22 dBm
cascaded amplifier calculated from #1 and #2	-	21.85 dBm

^{*}Measurement setup has been deducted.

Visit talk "Intermodulation Distortion Analysis In Cascaded D-Band GaN Amplifiers" on Thursday 14:00 Hall D

www.meteracom.de

20 August 2025 | Benjamin Schoch | Instrumentation for Traceable Distortion Characterization of Terahertz Transceivers | 16/19

Summary

- Development and optimization of THz analog electronic frontends requires thorough sensitivity analysis w.r.t. frontend impairments
- Superheterodyne 300 GHz Tx/Rx chipset has been introduced
- Unwanted harmonics from frequency multiplication in the LO path pose risk of in-band interferers to modulated signals, degrading the CIR.
- CrossLink measurement platform was introduced offering innovative capabilities for the characterization of transceivers and transceiver components dedicated to 6G
- In-situ combined time and frequency domain measurement
- Custom VCA unit for inline time and frequency domain characterization
 - EVM
 - IMD
 - Transfer function
- Inline correction of wideband complex modulated communication signals at DUT input and DUT
 output

References

- [1] IEEE Standard for High Data Rate Wireless Multi-Media Networks—Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical Layer, Std.
- [2] World Radiocommunication Conference 2019 Final Acts, 2019.
- [3] I. Kallfass *et al.*, "Instrumentation for the Time and Frequency Domain Characterization of Terahertz Communication Transceivers and their Building Blocks," *2023 IEEE/MTT-S International Microwave Symposium IMS 2023*, San Diego, CA, USA, 2023, pp. 1030-1033, doi: 10.1109/IMS37964.2023.10188006.
- [4] B. Schoch, D. Wrana, A. Tessmann and I. Kallfass, "Wideband Cross-Domain Characterization of a W-band Amplifier MMIC," 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 2023, pp. 770-773, doi: 10.23919/EuMC58039.2023.10290485.
- [5] Dan et al., "A Superheterodyne 300GHz Transmit Receive Chipset for Beyond 5G Network Integration," in 2021 16th European Microwave Integrated Circuits Conference (EuMIC), 2022, pp. 117–120.
- Wrana et al., "Sensitivity Analysis of a 280 312 GHz Superheterodyne Terahertz Link Targeting IEEE802.15.3d Applications", IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 4, pp. 325–333, 2022.
- D. Wrana, S. Haussmann, B. Schoch, L. John, A. Tessmann and I. Kallfass, "Effects of Harmonics from Frequency-Multiplicative Carrier Generation in a Superheterodyne 300 GHz Transmit Frontend," 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 2023, pp. 138-141, doi: 10.23919/EuMC58039.2023.10290717

Thank you very much for your Attention

E-Mail: Benjamin.Schoch@ilh.uni-stuttgart.de

